RIDComp unit

This unit is for the Report Interface Designer Delphi 2.0/3 component.

TRI-I Engineering Contact Information

License Agreement
Redistributable Files

Components

TRIDComp

Types

TActionEvent

TErrorEvent

Constants

Error Constants used in the OnError event:

errBuildObjList 1099
errPopulateParams 1098
errPopulateSQLControls 1097
errShowRpt 1096
errRIDExecRpt 1095

errUnknownMajorVersion 1094
errUnknownMinorVersion 1093
errUnknownFileFormat 1092

errRIDBuildStream 1091
Action Constants used in the OnAction event:
actNothing 0
actOK 1
actCancel 2
actHelp 3
actClose 6
actLoad 11
actSave 12
actClear 13
actAutoLaunch 98
actlnit 99
Status Constants used by the Status method:
stsBadDLL -1
stsOk 0

Copyright © 1997, TRI-I Engineering, Inc.
All Rights Reserved.

http://www.iii-eng.com



TRIDComp component

Properties Methods Events Tasks

Unit
RIDComp

Description

TRIDComp is the Report Interface Designer "design-time"component for the Borland Delphi development
environment. It provides a programmatic link between Delphi 2.0/3, Report Interface Designer, and
Seagate Crystal Reports.

To use this component, just select from the palette and drop onto the main form of your application.
Many of the properties and functionality can be tested at design-time. Set the DDFName property with an

appropriate value then activate the Preview property. Preview will call the Execute method to display the
RID dialog.

TRI-1 Engineering Contact Information

License Agreement
Redistributable Files

Copyright © 1997, TRI-I Engineering, Inc.
All Rights Reserved.

http://www.iii-eng.com



Properties

F Run-time only

@= Key properties

@ About

Database
DataSource
DDFName
Destination

DialogOnly

s ParamStrs

[
(e

=

Preview
RptDirectory
Ta

UserlD

z




Methods

&= Key methods
Create



Events

&= Key events
s OnAction
] OnError



About the TRIDComp component

TRIDComp referen

Purpose
Use the TRIDComp component to connect your applications to the criteria dialogs you designed using the
Report Interface Designer application.

Tasks
Add an instance of the TRIDComp component to your project by selecting from the palette and dropping
onto your main form. In your code, set the DDFName property and then call the Execute method.

During the design phase, you can Preview what the RID dialog will look like, and as long as the
DialogOnly property is FALSE, pressing the Ok button on the displayed dialog will activate Crystal
Reports to display the report using the specified criteria.




About property

Applies to
TRIDComp component

Declaration
property About;

Description

Design-time pseudo property which displays an About Box for the RIDComp component when the "..."
ellipse button is pressed in the Object Inspector.



See also

<<< See also of About property >>>



About property example



Database property

See also

Applies to
TRIDComp component

Declaration
property Database: String;

Description

This property is used in conjunction with the DataSource property. It will be populated when a report is
assigned, but can be changed if desired. No verification is performed at the time of the change, so it is
important that the new database has the same reporting structure.



See also

Datasource property
UserlD property
Password property




DataSource property

See also

Applies to
TRIDComp component

Declaration
property DataSource: String;

Description

This property is a combobox listing all configured ODBC datasources. If the report is ODBC-based and
the DSN for the report is configured on the current PC, then this value will be automatically selected. If the
report is SQL-based, i.e., using a native driver, then the program will attempt to locate an ODBC DSN of
that same name. If one cannot be found, the value will be set to <unknown>.

A valid ODBC configuration is only necessary if using either the "runtime-sourcing" capabilities of the
ListBox or ComboBox controls. An interesting feature of both Crystal Reports and RID is that a combined
native driver/fODBC driver combination can be implemented. If the report is based on a native driver but
you would like to use the SQL controls, then it is necessary to configure an ODBC datasource targeted at
the same server (and named the same) as the DataSource property of the TReport control in the RID
DialogBox. In this way, data for the controls will be populated using an ODBC connection while the native
connectivity will be used during the actual report execution.



See also

Database property
UserlD property
Password property



DDFName property

See also

Applies to
TRIDComp component

Declaration
property DDFName: String;

Description
This is the name of the Dialog Definition File.



See also

RptDirectory property
Preview property
Execute method




Delimiter property

See also Example

Applies to
TRIDComp component

Declaration
property Delimiter: Char;

Description
<<< Description of Delimiter property >>>
Run-time only



See also

<<< See also of Delimiter property >>>



Delimiter property example



Destination property

Applies to
TRIDComp component

Declaration
property Destination: Integer;

Description
This property is not currently implemented.



DialogOnly property

See also Example

Applies to
TRIDComp component

Declaration
property DialogOnly: Boolean;

Description

This property determines if Crystal Reports will be called when the "Ok" button is pressed on the RID
Dialog. The functionality may be useful if you are only interested in returning the selection criteria chosen
by the user.



See also

Preview property
Execute method



DialogOnly property example

The following code is a modified copied from the RIDView sample program. This program has a
combobox that stores the name of the files selected using an OpenDialog component. When a toolbar
button is pressed, this retrieves the filename associated with the currently selected combobox entry and
sets the DDFName property of the RIDComp component. The DialogOnly property is then set to TRUE,
and the Execute method is called to display the dialog and permit the user to enter criteria. When the user
presses the Ok button, Crystal Reports is not activated, though the OnAction event is still triggered.

procedure TMainForm.ExecMenuClick(Sender: TObject);
begin
if (cboxDDF.Text <> ") then
with RIDCompl do
begin
DDFName := TStr(cbxDDF.Items.Objects[cbxDDF.IltemIndex]).Str;
DialogOnly := TRUE;
Execute;
end;
end;



Name property

Applies to
TRIDComp component

Declaration
property Name;

Description
The name of the control.



ParamStrs property

Example

Applies to
TRIDComp component

Declaration
property ParamStrs: TStringList;

Description
This property permits run-time assignment or retrieval of Parameter values, in "Name=Value" format.
These values can be referenced or changed during the OnAction() event execution phase.

Run-time only



ParamStrs property example
The following example demonstrates how to access the dialog parameters during the OnAction event.

procedure TMainForm.RIDComp1lAction(Action: Word; var aModalResult: Word);
var
PL : TStringlList;
Act : String;
PF : TParamForm;
begin
if NOT(FParamsFlag) then
Exit;
try
PL := TStringList.Create;
PF := TParamForm.Create(Self);
case Action of
actNothing : Act := 'actNothing';

actOK : Act 1= 'actOK';
actCancel : Act := 'actCancel’;
actHelp : Act :='actHelp’;
actClose : Act := 'actClose’;
actlLoad : Act := 'actLoad’;
actSave . Act := 'actSave’;
actClear : Act := 'actClear’;
actAutoLaunch : Act := 'actAutoLaunch’;
actlnit : Act ;= 'actlnit’;

end;

with PF do
begin

PL.Assign(RIDComp1l.ParamStrs);
ParamStrs :=PL;
CurrAction := Act;
ShowModal;
PL.Text := ParamStrs.Text;
RIDCompl.ParamStrs := PL;
end;
finally
PF.Free;
PL.Free;
end;
end;



ParentHWnd property

Applies to
TRIDComp component

Declaration
property ParentHWnd: HWND;

Description
This "write-only" property permits assignment of a Parent window for the Report output window. Use this
when creating an MDI application where you wish to fully contain the report window within a child window.

Run-time only
Write-only



Password property

See also

Applies to
TRIDComp component

Declaration
property Password: String;

Description

This property is used in conjunction with the UserID property, and needs to be set when using any SQL
controls (TComboBox, TListBox) associated with a protected database. This property will be populated
when a Report is assigned.



See also

Database property
Datasourceproperty
UserlD property




Preview property

See also

Applies to
TRIDComp component

Declaration
property Preview: String;

Description

This is not really a property, but a mechanism for viewing RID dialogs at "design-time". Set the DDFName
property and then activate the Preview mode to see the actual RID dialog. If DialogOnly is set to TRUE,
then Crystal Reports will not be executed.



See also

Execute method



RptDirectory property

See also

Applies to
TRIDComp component

Declaration
property RptDirectory: String;

Description
This property determines where RID will look for the Crystal Reports .RPT files. The report file will be

located based on the following criteria:

1. If the RptDirectory property has a value, use it to find the .RPT file.

2. If the .RPT file is not found using the RptDirectory value, check in
the same location as the DDF file.

3. If not found where the DDF file is, then use the path stored when
the Report Association was made in the Report Interface Designer
application.

4. If not found, then look in the directory where the current application
was execute from.

5. If still not found, display an error.



See also

DDFName property



Tag property

Applies to
TRIDComp component

Declaration
property Tag;

Description
The tag property for the control.



UserlD property

See also

Applies to
TRIDComp component

Declaration
property UserID: String;

Description

This property is used in conjunction with the Password property, and needs to be set when using any SQL
controls (TComboBox, TListBox) associated with a protected database. This property will be populated
when a Report is assigned.

Protected



See also

Database property
Datasource property
Password property



Create method
Applies to
TRIDComp component

Declaration
constructor Create (AOwner: TComponent); override;

Description
This is the default object constructor.



Destroy method
Applies to
TRIDComp component

Declaration
destructor Destroy; override;

Description
This is the default object destructor.



Execute method

See also Example

Applies to
TRIDComp component

Declaration
function Execute: Integer; virtual;

Description
Call this method to initiate the Dialog display and Report creation execution sequence.



See also

Preview property




Execute method example

The following code is copied from the RIDView sample program. This program has a combobox that
stores the name of the files selected using an OpenDialog component. When a toolbar button is pressed,
this retrieves the filename associated with the currently selected combobox entry and sets the DDFName
property of the RIDComp component. Then the Execute method is called to display the dialog and permit
the user to enter criteria.

procedure TMainForm.ExecMenuClick(Sender: TObject);
begin
if (coxDDF.Text <> ") then
with RIDCompl do
begin
DDFName := TStr(cbxDDF.Items.Objects[cbxDDF.IltemIindex]).Str;
Execute;
end;
end;



Status method

Example

Applies to
TRIDComp component

Declaration
function Status: Integer;

Description
Call this method to check the status of the RID Engine. Result values are either stsOk (0) or stsBadDLL (-
1), which usually occurs when the RIDComp component cannot find the RIDExec.dll file.



Status method example

This code uses a button and a TRIDComp component on a form. When the user clicks the button, the
code tests the Status of the component.

procedure TForm1.ButtonlClick(Sender: TObject);
var
StatRes : Integer;
begin
StatRes := RIDCompl.Status;
case StatRes of
stsOk : ShowMessage('Status is Ok');
stsBadDLL : ShowMessage('Status is BadDLL.");
end;
end;



OnAction event

See also Example

Applies to
TRIDComp component

Declaration
type TActionEvent = procedure (Action: Word; wvar aModalResult: Word) of Object;

property OnAction: TActionEvent;

Description
This event is fired when a button is pressed on the RID dialog.

Action is one of the following values:

actNothing This is a default value which should never occur.
actOK Indicates that an "Ok" button was pressed.
actCancel Indicates that a "Cancel" button was pressed.
actHelp Indicates that a "Help" button was pressed.
actClose Indicates that a "Close" button was pressed.
actLoad Indicates that a "Load" button was pressed.
actSave Indicates that a "Save" button was pressed.
actClear Indicates that a "Clear" button was pressed.

actAutoLaunch Indicates that the "AutoLaunch" property for the Report is TRUE. The OnAction
event will be called with this value instead of the actlnit value.
actlnit The event gets called with this value prior to the Dialog display.

aModalResult is the default ModalResult value for the pressed button. It can be changed at this

time to keep the dialog on the screen.

The ParamStrs property is accessible during this event, and default control values can be set prior to the
display of the dialog.



See also

OnError event



OnAction event example

The following example demonstrates how to overwrite the standard action handling to process the dialog
parameters. It is the Action handling functionality of the RIDView sample program.

procedure TMainForm.RIDComp1lAction(Action: Word; var aModalResult: Word);

var
PL : TStringlList;
Act : String;
PF : TParamForm;
begin
if NOT(FParamsFlag) then
Exit;
try
PL := TStringList.Create;
PF := TParamForm.Create(Self);
case Action of
actNothing . Act := 'actNothing';
actOk : Act := 'actOK/;
actCancel : Act := 'actCancel’;
actHelp : Act :='actHelp';
actClose 1 Act := 'actClose’;
actlLoad : Act := 'actLoad’;
actSave : Act := 'actSave';
actClear : Act := 'actClear";
actAutoLaunch : Act := 'actAutoLaunch’;
actlnit : Act ;= 'actlInit’;
end;
with PF do
begin
PL.Assign(RIDComp1l.ParamStrs);
ParamStrs :=PL;
CurrAction := Act;
ShowModal;
PL.Text := ParamStrs.Text;
RIDCompl.ParamStrs := PL;
end;
finally
PF.Free;
PL.Free;
end;

end;



OnError event

See also Example

Applies to
TRIDComp component

Declaration

type TErrorEvent = procedure (ErrorNum: Word; ErrorText: PChar; wvar Handled:
Boolean) of object;

property OnError: TErrorEvent;

Description
This event is fired when an error is detected.

ErrorNum and ErrorText are as follows:

errBuildObjList 1099 Depends on where error occurs.
errPopulateParams 1098 Depends on where error occurs.
errPopulateSQLControls 1097 Depends on where error occurs.
errShowRpt 1096 Depends on where error occurs.
errRIDExecRpt 1095 Depends on where error occurs.

errUnknownMajorVersion 1094 Unknown Major Version in RID File.
errUnknownMinorVersion 1093 Unknown Minor Version in RID File.
errUnknownFileFormat 1092 Unknown File Format.
errRIDBuildStream 1091 Depends on where error occurs.

Handled is a boolean value with a default of FALSE. Setting this value to TRUE
will stop RID from displaying the error message.



See also

OnAction event



OnError event example

The following example demonstrates how to overwrite the standard error handling to display custom
errors.

procedure TForm1.RIDComplError(ErrorNum: Word; ErrorText: PChar;
var Handled: Boolean);
begin
Handled := True;
case ErrorNum of
errBuildObjList :
begin
MessageBox(0, PChar(Format('[%d] "BuildObjList" Error: [%s]’,
[ErrorNum, ErrorText])),
'Report Interface Designer', MB_ICONEXCLAMATION or MB_OK);
end;
errPopulateParams :
begin
MessageBox(0, PChar(Format('[%d] "PopulateParams" Error: [%s]',
[ErrorNum, ErrorText])),
‘Report Interface Designer', MB_ICONEXCLAMATION or MB_OK);
end;
errPopulateSQLControls :
begin
MessageBox(0, PChar(Format('[%d] "PopulateSQLControls" Error: [%s]',
[ErrorNum, ErrorText])),
'Report Interface Designer', MB_ICONEXCLAMATION or MB_OK);
end;
errShowRpt :
begin
MessageBox(0, PChar(Format('[%d] "ShowRpt" Error: [%s]',
[ErrorNum, ErrorText])),
‘Report Interface Designer', MB_ICONEXCLAMATION or MB_OK);
end;
errRIDExecRpt :
begin
MessageBox(0, PChar(Format('[%d] "RIDExecRpt" Error: [%s]',
[ErrorNum, ErrorText])),
'Report Interface Designer', MB_ICONEXCLAMATION or MB_OK);
end;
end;
end;



TActionEvent type

See also

Unit
RIDComp

Declaration
type TActionEvent = procedure (Action: Word; wvar aModalResult: Word) of
Object;

Description

Assign a handler to this event to respond to a button-press action. The Action value corresponds to one of
the act???? constants. The aModalResult value corresponds to the default value assigned to the pressed
button. You can change this value to modify the default behavior.



See also

OnAction event



TErrorEvent type

See also
Unit
RIDComp

Declaration
type TErrorEvent = procedure (ErrorNum: Word; ErrorText: PChar; wvar Handled:
Boolean) of object;

Description

Assign a handler to this event to trap any errors that are generated during the Execute() phase. The
ErrorNum value corresponds to one of the err???? constants. The ErrorText value is the default error
message. Handled defaults to FALSE. If you set it to TRUE, the RID engine will not display an error
message.



See also

OnError event



Contacting TRI-I Engineering, Inc.

We provide free Technical Support to registered users for 60 days from purchase or
registration. To receive support, you will be asked to provide your product serial number.
Technical Support for the Evaluation version is not available, however, we will attempt to
answer via e-mail any support questions you may have during the evaluation period.

Address:

TRI-I Engineering, Inc.
200 W. 17th Street, Suite 80
Cheyenne, WY 82001

Telephone:

Sales & Information
(888) 551-3500

Support
(310) 967-3966

World Wide Web:

http://www.iii-eng.com

sales@iii-eng.com
support@iii-eng.com




License Agreement

Report Interface Designer (RID) is Copyright © 1997, by TRI-I Engineering, Inc., All Rights reserved.

This software and accompanying documentation are protected by United States copyright law and also by
International Treaty provisions. Any use of this software in violation of copyright law or the terms of this
agreement will be prosecuted to the fullest extent permissible by law.

TRI-I Engineering, Inc. authorizes you to make archival copies of this software for the sole purpose of
back-up and protecting your investment from loss. Under no circumstances may you copy this software or
documentation for the purposes of distribution. You are not to remove any of the copyright notices
included in the software or product documentation.

You may distribute, without runtime fees or further licenses, your own compiled programs based on any of
the compile units and/or components included with Report Interface Designer (RID). You may also
distribute, without runtime fees or further licenses, the RIDEXEC.DLL dynamic link library, as well as any
compiled sample programs contained with this package. You may not distribute any of the Report
Interface Designer (RID) design-time components or the designer application without written permission
from TRI-I Engineering, Inc.

The previous restrictions do not prohibit you from distributing your own source code, units, or components
that depend upon Report Interface Designer (RID). However, others who receive your source code, units,
or components need to purchase their own copies of Report Interface Designer (RID) in order to compile
the source code or to write programs that use your units or components which are dependent on either
the Report Interface Designer (RID) components or the RIDEXEC.DLL dynamic link library.

The supplied software may be used by one person on as many computer systems as that person uses.
Group programming projects making use of this software must purchase a copy of the software and
documentation for each member of the group.

TRI-I Engineering, Inc. warrants that the physical CD or diskettes and documentation provided with
Report Interface Designer (RID) shall be free of defects in materials and workmanship for a period of 60
days from the date of receipt. If you notify us of such a defect within the warranty period, TRI-I
Engineering, Inc. will replace the defective CD, diskette(s), or documentation at no cost to you.

TRI-I Engineering, Inc. warrants that the software will function as described in this documentation for a
period of 60 days from receipt. If you encounter a bug or deficiency, we will require a problem report
detailed enough to allow us to find and fix the problem. If you properly notify us of such a software
problem within the warranty period, TRI-I Engineering, Inc. will update the defective software at no cost to
you.

TRI-I Engineering, Inc. further warrants that the purchaser will remain fully satisfied with the product for a
period of 60 days from receipt. If you are dissatisfied for any reason, and TRI-I Engineering, Inc. cannot
correct the problem, contact the party from whom the software was purchased for a return authorization. If
you purchased the product directly from TRI-I Engineering, Inc., we will refund the full purchase price of
the software (not including shipping costs) upon receipt of the original program CD or diskette(s) and
documentation in undamaged condition. TRI-I Engineering, Inc. cannot offer refunds directly to anyone
who did not purchase a product directly from us.

Disclaimer of Warranty

TRI-I ENGINEERING, INC. DOES NOT ASSUME ANY LIABILITY FOR THE USE OF REPORT
INTERFACE DESIGNER (RID) BEYOND THE ORIGINAL PURCHASE PRICE OF THE SOFTWARE. IN
NO EVENT WILL TRI-I ENGINEERING, INC. BE LIABLE TO YOU FOR ADDITIONAL DAMAGES,



INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE THESE PROGRAMS, EVEN IF TRI-
I ENGINEERING, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Governing Law
This agreement shall be governed by the laws of the State of Wyoming, United States of America.

All TRI-I Engineering, Inc. product names are trademarks or registered trademarks of TRI-I Engineering,
Inc. Other brand and product names are trademarks or registered trademarks of their respective holders.



Redistributable Files

Addendum to the TRI-I Engineering, Inc. License Agreement

TRI-I Engineering, Inc. grants you a royalty-free license to distribute applications based on the RIDComp
and RIDCompX components and libraries. Following is the list of redistributable files:

o RIDExec.dll Every client will need this file installed in either the Application directory

(preferred) or in the Windows System directory.

o RIDCompX.ocx

These files are only required if you are developing
RIDCompX.tlb

with the RID ActiveX component. As part of your own installation program, this file
will need to be copied to the client Windows System directory and then
registered. If your installation program does not automatically detect and register

OCX files, then you will need to manually register this component using
REGSVR32.EXE. Following is an example:

REGSVR32 <ocx directory>\RIDCompX.ocx

In no case may you redistribute with your application any of the design-time components, including but

not limited to RIDCOMP.DCU and III.DPL, any ActiveX control license (.LIC) files, or the Report Interface
Designer application (RID.EXE) itself.






